Information Fusion in Biomedical Image Analysis: Combination of Data vs. Combination of Interpretations
نویسندگان
چکیده
Information fusion has, in the form of multiple classifier systems, long been a successful tool in pattern recognition applications. It is also becoming increasingly popular in biomedical image analysis, for example in computer-aided diagnosis and in image segmentation. In this paper, we extend the principles of multiple classifier systems by considering information fusion of classifier inputs rather than on their outputs, as is usually done. We introduce the distinction between combination of data (i.e., classifier inputs) vs. combination of interpretations (i.e., classifier outputs). We illustrate the two levels of information fusion using four different biomedical image analysis applications that can be implemented using fusion of either data or interpretations: atlas-based image segmentation, "average image" tissue classification, multi-spectral classification, and deformation-based group morphometry.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملCombination of Feature Selection and Learning Methods for IoT Data Fusion
In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...
متن کاملImplementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter
In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 19 شماره
صفحات -
تاریخ انتشار 2005